Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            This article presents constraints on dark-matter-electron interactions obtained from the first underground data-taking campaign with multiple SuperCDMS HVeV detectors operated in the same housing. An exposure of is used to set upper limits on the dark-matter-electron scattering cross section for dark matter masses between 0.5 and , as well as upper limits on dark photon kinetic mixing and axionlike particle axioelectric coupling for masses between 1.2 and . Compared to an earlier HVeV search, sensitivity was improved as a result of an increased overburden of 225 meters of water equivalent, an anticoincidence event selection, and better pile-up rejection. In the case of dark-matter-electron scattering via a heavy mediator, an improvement by up to a factor of 25 in cross section sensitivity was achieved. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Dark matter may induce an event in an Earth-based detector, and its event rate is predicted to show an annual modulation as a result of the Earth’s orbital motion around the Sun. We searched for this modulation signature using the ionization signal of the DarkSide-50 liquid argon time projection chamber. No significant signature compatible with dark matter is observed in the electron recoil equivalent energy range above , the lowest threshold ever achieved in such a search. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            Abstract We present a novel approach for the search of dark matter in the DarkSide-50 experiment, relying on Bayesian Networks. This method incorporates the detector response model into the likelihood function, explicitly maintaining the connection with the quantity of interest. No assumptions about the linearity of the problem or the shape of the probability distribution functions are required, and there is no need to morph signal and background spectra as a function of nuisance parameters. By expressing the problem in terms of Bayesian Networks, we have developed an inference algorithm based on a Markov Chain Monte Carlo to calculate the posterior probability. A clever description of the detector response model in terms of parametric matrices allows us to study the impact of systematic variations of any parameter on the final results. Our approach not only provides the desired information on the parameter of interest, but also potential constraints on the response model. Our results are consistent with recent published analyses and further refine the parameters of the detector response model.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
